Sort by
Anti-BP230 IgE autoantibodies in bullous pemphigoid intraindividually correlate with disease activity

BackgroundBullous pemphigoid (BP), the most common subepidermal autoimmune blistering disease, is classically defined by the presence of IgG autoantibodies directed against the hemidesmosomal proteins BP180 (type XVII collagen) and BP230 and the predominance of skin lesions. Several studies have addressed the role of anti-BP180 IgE in patients and experimental models, while data on anti-BP230 IgE are scarce. ObjectiveTo assess anti-BP230 IgE level by ELISA in BP sera and to correlate it with disease severity and clinical characteristics. MethodsBP sera underwent anti-BP230 IgE ELISA and Western blotting against human BP230 fragments. ResultsWe demonstrate that 36/154 (23%) of BP sera were positive for anti-BP230 IgE. Anti-BP230 IgE levels had no correlation with clinical phenotype or disease activity per se. Interestingly, anti-BP230 IgE was significantly associated with disease activity within individuals during the course of the disease. Additionally, anti-BP230 IgE and total IgE levels showed a significant correlation. Notably, anti-BP230 IgG correlated interindividually with disease activity. By Western blotting, the C-terminal domain of BP230 fragments (C2; amino acids 2024–2349 and C3; amino acids 2326–2649), provided the best serological assay for anti-BP230 IgE detection. ConclusionAs a complementary tool, IgE immunoblotting is recommended to obtain an optimal serological diagnosis, particularly in patients with severe disease without IgG reactivity by BP180- or BP230-specific ELISA. Although the detection of serum anti-BP230 IgE is not of major diagnostic significance, it may be relevant for therapeutic decisions, e.g., for anti-IgE-directed treatment, which has been successfully used in case series of BP.

Relevant
IL-4-induced decrease in both the number and CTLA-4 expression of Treg impairs suppression of Th2 type inflammation in severe atopic dermatitis

BackgroundTreg plays a pivotal role in the suppression of Th2 cell and the maintenance of immune homeostasis. The precise molecular mechanism underlying the disruption of Treg suppression of Th2 cell and the promotion of Th2 type inflammation in allergic diseases remains elusive. ObjectiveThis study aims to investigate the molecular mechanism underlying quantitative and functional changes of Treg in AD. MethodsThe molecular mechanism was investigated using flow cytometry, mRNA sequencing, co-culture experiments, co-immunoprecipitation, chromatin immunoprecipitation, and bisulfite sequencing in vitro or in AD mice model and patients with AD. ResultsIncreased proportion of Treg was detected in mild and moderate AD. Conversely, characteristic decrease in both the number and CTLA-4 expression of Treg was relevant to serum IL-4 level in severe AD patients, which was verified under a high concentration of IL-4 treatment in vitro. The underlying mechanism is that IL-4/pSTAT6 pathway recruits DNMT1 and HDAC2 to inhibit transcriptional regulation of Foxp3 and CTLA-4 loci. High level of IL-4 impaired the suppression of Treg against Th2 cell differentiation mediated by CTLA-4, and blockade of IL-4Rα signaling in Treg restored Treg number and suppression of Th2 cell in AD model mice and patients with AD. ConclusionThe number of Treg is relevant to stratification of severity and serum IL-4 level in patients with AD. Abnormal high level of IL-4 epigenetically triggers a decrease in both the number and CTLA-4 expression of Treg. The reduced expression of CTLA-4 on Treg induced by IL-4 impairs suppression of Th2 cell differentiation.

Relevant
Targeting antibody-mediated complement-independent mechanism in bullous pemphigoid with diacerein

BackgroundBullous pemphigoid (BP) is an antibody-mediated blistering disease predominantly affecting the elderly. The pathogenesis involves both complement-dependent and complement-independent mechanisms. The therapeutic potential of targeting complement-independent mechanism has not yet been determined. The mainstay of treatment, corticosteroid, has many side effects, indicating the needs of better treatments. ObjectiveWe tempted to establish an in vitro model of BP which resembles complement-independent mechanism and to examine the therapeutic potential of a novel anti-inflammatory agent, diacerein. MethodsCultured HaCaT cells were treated with purified antibodies from BP patients, with or without diacerein to measure the cell interface presence of BP180, protein kinase C, and the production of proinflammatory cytokines. An open-label, randomized, phase 2 trial was conducted to compare topical diacerein and clobetasol ointments in patients with mild-to-moderate BP (NCT03286582). ResultsThe reduced presentation of BP180 at cell interface after treating with BP autoantibodies was noticed in immunofluorescence and western blotting studies. The phenomenon was restored by diacerein. Diacerein also reduced the autoantibody-induced increase of pro-inflammatory cytokines. Reciprocal changes of BP180 and protein kinase C at the cell interface were found after treating with BP autoantibodies. This phenomenon was also reversed by diacerein in a dose-dependent manner. The phase 2 trial showed that topical diacerein reduced the clinical symptoms which were comparable to those of topical clobetasol. ConclusionDiacerein inhibited BP autoantibody-induced reduction of BP180 and production of proinflammatory cytokines in vitro and showed therapeutic potential in patients with BP. It is a novel drug worthy of further investigations.

Relevant
RAS-activated PI3K/AKT signaling sustains cellular senescence via P53/P21 axis in experimental models of psoriasis

BackgroundPsoriasis is a chronic immune-mediated skin disease in which upper epidermal keratinocytes exhibit a senescent-like phenotype. In psoriatic skin, a variety of inflammatory cytokines can activate intracellular pathways including phosphatidylinositol 3-kinase (PI3K)/AKT signaling and RAS effectors. AKT and RAS participate to cellular senescence, but currently their role in senescence responses occurring in psoriasis have not yet been investigated. ObjectiveThe role of AKT molecular axis and RAS activation was evaluated in the context of cellular senescence in psoriasis disease. MethodsRAS/AKT involvement in senescence was analyzed in psoriatic keratinocytes cultures subjected to multiple passages to promote senescence in vitro, as well as in skin lesions of patients affected by psoriasis. The impact of pharmacological inhibition of PI3K/AKT pathway on senescence and inflammation responses was tested in senescent psoriatic keratinocytes and in a psoriasiform dermatitis murine model induced by RAS overexpression in the upper epidermis of mice. ResultsWe found AKT hyperactivation associated to the upregulation of senescence markers, in senescent psoriatic keratinocyte cultures, as well as in skin lesions of psoriatic patients. AKT-induced senescence was sustained by constitutive RAS activation, and down-stream responses were mediated by P53/P21 axis. PI3K/AKT inhibition contrasted senescence processes induced by cytokines in psoriatic keratinocytes. Additionally, RAS-induced psoriasis-like dermatitis in mice was accompanied by AKT upregulation, increase of senescence marker expression and by skin inflammation. In this model, both senescence and inflammation were significantly reduced by selective AKT inhibition. ConclusionTherefore, targeting RAS-AKT pathway could be a promising novel strategy to counteract multiple psoriasis symptoms.

Relevant
LEKTI domain 6 displays anti-inflammatory action in vitro and in a murine atopic dermatitis model

BackgroundLympho-epithelial Kazal-type-related inhibitor (LEKTI) is a serine protease inhibitor consisting of multiple domains. A loss of function mutation is described in Netherton patients that show severe symptoms of atopic lesions and itch. ObjectivesLEKTI domain 6 (LD6) has shown strong serine protease-inhibitory action in in vitro assays and thus it was tested in vitro and in vivo for potential anti-inflammatory action in models of atopic skin disease. MethodsHuman skin equivalents were treated with LD6 and an inflammatory reaction was challenged by kallikrein-related endopeptidase 5 (KLK5). Furthermore, LD6 was tested on dorsal root ganglia cells stimulated with KLK5, SLIGRL and histamine by calcium imaging. The effect of topically administered LD6 (0.4–0.8%) in lipoderm was compared to a topical formulation of betamethasone-diproprionate (0.1%) in a therapeutic setting on atopic dermatitis-like lesions in NC/Nga mice sensitized to house dust mite antigen. Endpoints were clinical scoring of the mice as well as determination of scratching behaviour. ResultsKLK5 induced an upregulation of CXCL-8, CCL20 and IL-6 in skin equivalents. This upregulation was reduced by pre-incubation with LD6. KLK5 as well as histamine induced calcium influx in a population of neurons. LD6 significantly reduced the calcium response to both stimuli. When administered onto lesional skin of NC/Nga mice, both LD6 and betamethasone-dipropionate significantly reduced the inflammatory reaction. The effect on itch behaviour was less pronounced. ConclusionTopical administration of LD6 might be new therapeutic option for treatment of lesional atopic skin.

Open Access
Relevant
Combined effect of Neurotropin® and methylcobalamin on postherpetic neuralgia in mice infected with herpes simplex virus type-1

BackgroundPostherpetic pain (PHP) is difficult to control. Although Neurotropin® (NTP) and methylcobalamin (MCB) are often prescribed to treat the pain, the efficacy of combined treatment for PHP remains imcompletely understood. ObjectiveIn this study, we investigate the combined effects of NTP and MCB on PHP in mice. MethodsNTP and MCB were administered from day 10–29 after herpes simplex virus type-1 (HSV-1) infection. The pain-related responses were evaluated using a paint brush. The expression of neuropathy-related factor (ATF3) and nerve repair factors (GAP-43 and SPRR1A) in the dorsal root ganglion (DRG) and neurons in the skin were evaluated by immunohistochemical staining. Nerve growth factor (NGF) and neurotrophin-3 (NT3) mRNA expression levels were evaluated using real-time PCR. ResultsRepeated treatment with NTP and MCB after the acute phase inhibited PHP. Combined treatment with these drugs inhibited PHP at an earlier stage than either treatment alone. In the DRG of HSV-1-infected mice, MCB, but not NTP, decreased the number of cells expressing ATF3 and increased the number of cells expressing GAP-43- and SPRR1A. In addition, MCB, but not NTP, also increased and recovered non-myelinated neurons decreased in the lesional skin. NTP increased the mRNA levels of NTF3 in keratinocytes, while MCB increased that of NGF in Schwann cells. ConclusionThese results suggest that combined treatment with NTP and MCB is useful for the treatment of PHP. The combined effect may be attributed to the different analgesic mechanisms of these drugs.

Relevant